subject
Physics, 22.01.2021 18:50 jdeformity

Coulomb's Law: Coulomb's law is F = k (q1xq2)/ r^2 where k = 9 x 10^9 C^2/m^2. a) Sketch the charges and use Coulomb's law to determine the electric force between two charged particles where q1 = -5 x 10^-3 C and q2 = -1 x 10^-3 C. Q1 and Q2 are separated by a distance of 0.25 m. b) Determine whether the electric force attractive or repulsive and explain your answer?

ansver
Answers: 1

Another question on Physics

question
Physics, 22.06.2019 17:10
Which statement best describes the superposition principle? a.) if two in-phase waves arrive simultaneously at a point, their amplitudes add up b.) if two out-of-phase waves arrive simultaneously at a point, their amplitudes add up c.) if two in-phase waves arrive at a point one after another, their amplitudes add up d.) if two out-of-phase waves arrive at a point one after another, their amplitudes adds up
Answers: 2
question
Physics, 22.06.2019 19:00
Review multiple-concept example 7 in this chapter as an aid in solving this problem. in a fast-pitch softball game the pitcher is impressive to watch, as she delivers a pitch by rapidly whirling her arm around so that the ball in her hand moves in a circle. in one instance, the radius of the circle is 0.626 m. at one point on this circle, the ball has an angular acceleration of 66.1 rad/s2 and an angular speed of 12.6 rad/s. (a) find the magnitude of the total acceleration (centripetal plus tangential) of the ball. (b) determine the angle of the total acceleration relative to the radial direction.
Answers: 3
question
Physics, 22.06.2019 22:30
Atennis player used a tennis racket to hit a tennis ball with a mass of 0.25 kg with a force of 5.25 newtons. how does the force the tennis racket exerted on the tennis ball compare with the force the tennis ball exerted on the tennis racket? a. the force of the tennis racket on the tennis ball is equal in magnitude and opposite in direction to the force the tennis ball exerted on the tennis racket. b. the force of the tennis racket on the tennis ball is equal in magnitude and in the same direction as the force the tennis ball exerted on the tennis racket. c. the force of the tennis racket on the tennis ball is less in magnitude and in the same direction as the force the tennis ball exerted on the tennis racket. d. the force of the tennis racket on the tennis ball is greater in magnitude and opposite in direction as the force the tennis ball exerted on the tennis racket.
Answers: 1
question
Physics, 23.06.2019 06:00
The buildup of charges on an object is called
Answers: 1
You know the right answer?
Coulomb's Law: Coulomb's law is F = k (q1xq2)/ r^2 where k = 9 x 10^9 C^2/m^2. a) Sketch the charges...
Questions