subject
Physics, 24.09.2020 01:01 jhonpiper

A uniformly charged disk like the disk in Fig. 21.25 has radius 2.50 cm and carries a total charge of 7.0 * 10-12 C. (a) Find the electric field (magnitude and direction) on the x-axis at x = 20.0 cm.

(b) Show that for x W R, Eq. (21.11) becomes E = Q>4pP0 x2, where Q is the total charge on the disk.

(c) Is the magnitude of the electric field you calculated in part (a) larger or smaller than the electric field 20.0 cm from a point charge that has the same total charge as this disk? In terms of the approximation used in part (b) to derive E = Q>4pP0 x2 for a point charge from Eq. (21.11), explain why this is so. (d) What is the percent difference between the electric fields produced by the finite disk and by a point charge with the same charge at x = 20.0 cm and at x = 10.0 cm?

ansver
Answers: 3

Another question on Physics

question
Physics, 22.06.2019 06:00
Aball is thrown upward. at a height of 10 meters above the ground, the ball has a potential energy of 50 joules (with the potential energy equal to zero at ground level) and is moving upward with a kinetic energy of 50 joules. what is the maximum height h reached by the ball? consider air friction to be negligible. 1. h ≈ 10 m 2. h ≈ 50 m 3. h ≈ 30 m 4. h ≈ 40 m 5. h ≈ 20 m 003 10.0 points which of the two object shown below has the greatest kinetic energy? a m b 1 2 m v 2v 1. kinetic energies are the same. 2. a 3. b 4. unable to determine. 004 10.0 points tim, with mass 74.6 kg, climbs a gymnasium rope a distance of 3.1 m. the acceleration of gravity is 9.8 m/s 2 . how much potential energy does tim gain? answer in units of j. 005 10.0 points a car is moving at 64 miles per hour. the kinetic energy of that car is 5 × 105 j. how much energy does the same car have when it moves at 111 miles per hour? answer in units of j. 006 10.0 points an 102 kg man climbs up a 1 m high flight of stairs. the acceleration of gravity is 9.81 m/s 2 . w
Answers: 3
question
Physics, 22.06.2019 10:00
Suppose a wheel with a tire mounted on it is rotating at the constant rate of 2.15 times a second. a tack is stuck in the tire at a distance of 0.373 m from the rotation axis. noting that for every rotation the tack travels one circumference (a) find the tack's tangential speed. (b) what is the tacks radial acceleration?
Answers: 2
question
Physics, 22.06.2019 15:30
To understand the electric potential and electric field of a point charge in three dimensions consider a positive point charge q, located at the origin of three-dimensional space. throughout this problem, use k in place of 14? ? 0. part adue to symmetry, the electric field of a point charge at the origin must point from the origin.answer in one word.part bfind e(r), the magnitude of the electric field at distance r from the point charge q.express your answer in terms of r, k, and q. part cfind v(r), the electric potential at distance rfrom the point charge q.express your answer in terms of r, k, and q part dwhich of the following is the correct relationship between the magnitude of a radial electric field and its associated electric potential ? more than one answer may be correct for the particular case of a point charge at the origin, but you should choose the correct general relationship. a)e(r)=dv(r)drb)e(r)=v(r)rc)e(r)=? dv(r)drd)e(r)=? v(r)r
Answers: 2
question
Physics, 22.06.2019 22:30
You add 800 ml of water at 20c to 800 ml of water at 80c what is the most likely final temperature of the mixture ? a. 100c b. 60c c. 25 c d.50c
Answers: 1
You know the right answer?
A uniformly charged disk like the disk in Fig. 21.25 has radius 2.50 cm and carries a total charge o...
Questions