subject
Physics, 01.09.2020 16:01 aangellexith2885

To understand the relationships of the energetics, forces, acceleration, and velocity of an oscillating pendulum, and to determine how the motion of a pendulum depends on the mass, the length of the string, and the acceleration due to gravity. For this tutorial, use the PhET simulation Pendulum Lab. This simulation mimics a real pendulum and allows you to adjust the initial position, the mass, and the length of the pendulum.
You can drag the pendulum to an arbitrary initial angle and release it from rest. You can adjust the length and the mass of the pendulum using the slider bars at the top of the green panel. Velocity and acceleration vectors can be selected to be shown, as well as the forms of energy.
Feel free to play around with the simulation. When you are done, click the Reset button.

A. Select to show the energy of pendulum 1. Be sure that friction is set to none. Drag the pendulum to an angle (with respect to the vertical) of 30o, and then release it. When the pendulum is at -30o, what form(s) of energy does it have?
B. Drag the pendulum to an angle (with respect to the vertical) of 30o, and then release it. At what angle is the pendulum swinging the fastest?
C. Drag the pendulum to an angle (with respect to the vertical) of 30o, and then release it. Select to show the acceleration vector. With the pendulum swinging back and forth, at which locations is the acceleration equal to zero?
D. With the pendulum swinging back and forth, how does the tension of the rope compare to the force of gravity when the angle is 0\degree?
E. Drag the pendulum to an angle (with respect to the vertical) of 90o, and then release it. With the pendulum swinging back and forth, where is the tension equal to zero?
F. The period of oscillation is the amount of time it takes for the pendulum to take a full swing, going from the original angle to the other side, and returning to the original angle. You can determine the period by selecting other tools, which gives you a stopwatch. With the pendulum swinging, you can start the stopwatch when the pendulum is at its original angle and time how long it takes to complete 10 swings. The period will be this time interval divided by 10 (this method is more accurate than trying to time one swing). Set the length of the pendulum to 1.0 m and the mass to 1.0 kg. Click Reset, and then drag the pendulum to an angle (with respect to the vertical) of 30o and release it. What is the period of oscillation?
G. How does the period of oscillation depend on the initial angle of the pendulum when released? (Be sure to measure the period for initial angles much greater than 30o.)
H. Keeping the length of the pendulum fixed, determine the period for a few different masses. (Alternatively, you can set up two pendulums by selecting Show 2nd pendulum. Adjust the lengths to be the same, and have one pendulum with a higher mass. You can release one and then release the other, with the same angle, when the first one is back at that angle.) How does the period of the pendulum depend on mass?
I. Now, keep the mass fixed to any value you choose and measure the period for several different pendulum lengths. How does the period of the pendulum depend on the length?
J. Now, change the planet where the experiment takes place to see how the period of oscillation depends on the acceleration due to gravity, g (on Earth, g ~10 m/s/s; g is larger than this value on Jupiter and smaller than this value on the Moon). How does the period of oscillation depend on the value of g?

ansver
Answers: 1

Another question on Physics

question
Physics, 21.06.2019 21:50
Adiver in midair has an angular velocity of 6.0 rad/s and a moment of inertia of 1.2 kg·m2. he then pulls is arms and legs into a tuck position and his angular velocity increases to 12 rad/s. the net external torque acting on the diver is zero. what is his moment of inertia in the tuck position?
Answers: 1
question
Physics, 21.06.2019 22:30
The membrane surrounding a living cell consists of an inner and an outer wall that are separated by a small space. assume that the membrane acts like a parallel plate capacitor in which the effective charge density on the inner and outer walls has a magnitude of 7.0 × 10-6 c/m2. (a) what is the magnitude of the electric field within the cell membrane? (b) find the magnitude of the electric force that would be exerted on a potassium ion (k+; charge = +e) placed inside the membrane.
Answers: 1
question
Physics, 22.06.2019 07:10
Search coils and credit cards. one practical way to measure magnetic field strength uses a small, closely wound coil called a search coil. the coil is initially held with its plane perpendicular to a magnetic field. the coil is then either quickly rotated a quarter-turn about a diameter or quickly pulled out of the field. (a) derive the equation relating the total charge q that flows through a search coil to the magnetic-field magnitude b. the search coil has n turns, each with area a, and the flux through the coil is decreased from its initial maximum value to zero in a time ∆t. the resistance of the coil is r, and the total charge is q = i∆t, where i is the average current induced by the change in flux. (b) in a credit card reader, the magnetic strip on the back of a credit card is rapidly “swiped” past a coil within the reader. explain, using the same ideas that underlie the operation of a search coil, how the reader can decode the information stored in the pattern of magnetization on the strip. (c) is it necessary that the credit card be “swiped” through the reader at exactly the right speed? why or why not?
Answers: 2
question
Physics, 22.06.2019 09:40
(a) assume the equation x = at^3 + bt describes the motion of a particular object, with x having the dimension of length and t having the dimension of time. determine the dimensions of the constants a and b. (use the following as necessary: l and t, where l is the unit of length and t is the unit of time.) (b) determine the dimensions of the derivative dx/dt = 3at^2 + b. (use the following as necessary: l and t, where l is the unit of length and t is the unit of time.)
Answers: 1
You know the right answer?
To understand the relationships of the energetics, forces, acceleration, and velocity of an oscillat...
Questions
question
Social Studies, 14.09.2020 19:01
question
Mathematics, 14.09.2020 19:01
question
Arts, 14.09.2020 19:01
question
Mathematics, 14.09.2020 19:01
question
Mathematics, 14.09.2020 19:01
question
Mathematics, 14.09.2020 19:01
question
Mathematics, 14.09.2020 19:01
question
Mathematics, 14.09.2020 19:01
question
Chemistry, 14.09.2020 19:01
question
Mathematics, 14.09.2020 19:01
question
Biology, 14.09.2020 19:01
question
Mathematics, 14.09.2020 19:01
question
English, 14.09.2020 19:01
question
Mathematics, 14.09.2020 19:01
question
Mathematics, 14.09.2020 19:01
question
Mathematics, 14.09.2020 19:01
question
Social Studies, 14.09.2020 19:01
question
Mathematics, 14.09.2020 19:01
question
English, 14.09.2020 19:01
question
Mathematics, 14.09.2020 19:01