subject
Physics, 15.07.2020 18:01 masie03

A rubber duck is released from rest near the surface of the earth. It then goes on to fall through a large vertical distance, and eventually reaches its terminal velocity. What would happen if this same experiment was repeated near the surface of the moon?

ansver
Answers: 2

Another question on Physics

question
Physics, 22.06.2019 12:50
The vapour pressure of benzene is 53.3 kpa at 60.6 °c, but it fell to 51.5 kpa when 19.0 g of a non-volatile organic compound was dissolved in 500 g of benzene. calculate the molar mass of the compound.
Answers: 2
question
Physics, 22.06.2019 19:50
Ahuge (essentially infinite) horizontal nonconducting sheet 10.0 cm thick has charge uniformly spread over both faces. the upper face carries +95.0 nc/m2 while the lower face carries -25.0 nc/ m2. what is the magnitude of the electric field at a point within the sheet 2.00 cm below the upper face? (ε0 = 8.85 × 10-12 c2/n · m2)
Answers: 1
question
Physics, 22.06.2019 23:40
To place a communications satellite into a geosynchronous orbit at an altitude of 22,240 mi above the surface of the earth, the satellite first is released from a space shuttle , which is in a circular orbit at an altitude of 185 mi, and then is propelled by an upper-stage booster to its final altitude. as the satellite passes through a, the booster's motor is fired to insert the satellite into an elliptic transfer orbit. the booster is again fired at b to insert the satellite into a geosynchronous orbit. knowing that the second firing increases the speed of the satellite by 4810ft/s, determine (a.) the speed of the satellite as it approaches b on the elliptic transfer orbit, (b.) the increase in speed resulting from the first firing at a.
Answers: 2
question
Physics, 23.06.2019 00:20
You are the coordinator for a program that is going to take place at night in a rectangular amphitheater in the mountains. you will have no access to any electricity, but you must be able to illuminate the entire grounds. you know the intensity of the light from a lantern varies inversely as the square of the distance from the lantern. suppose the intensity is 90 when the distance is 5 m. a. write an equation to model the situation. b. solve for the constant of variation. c. write the equation to model the situation using the constant () of variation. d. you have been given lanterns with 40 light intensity. use your equation to solve for the distance from the lantern. e. you need to illuminate 225 km. how many meters do you need to light? f. how many lanterns will you need?
Answers: 3
You know the right answer?
A rubber duck is released from rest near the surface of the earth. It then goes on to fall through a...
Questions
question
Chemistry, 26.01.2020 20:31