subject
Physics, 23.06.2020 10:57 B1GPAP1

Fy=mg-FT =may (Eqn. 1) Fy=mg-FT =may (Eqn. 1)
STEPS: 5. Okay, now we’re ready to collect data. Let’s vary one quantity at a time. Press reset, and then select the middle value for the spindle and the moment of inertia of the platter (so r = 0.03 m and I = 0.04 kg * m2). Now select the 1 kg hanging mass. Hit start. In an excel table, record all the data you obtain at these conditions: time (s), Dy (m), Dq (rad), v (m/s), w (rad/s), a (m/s2), and a (rad/s2).

6. Repeat step #5 for the 2 kg hanging mass, and then again for the 3 kg hanging mass.

7. Now vary the spindle radius, while keeping the hanging mass constant at 2 kg and the platter’s moment of inertia constant at I = 0.04 kg * m2. Try first the small radius (0.02 m), then hit reset and try the large radius (0.04 m). In each case, collect all the data yielded by the simulation: Time (s), Dy (m), Dq (rad), v (m/s), w (rad/s), a (m/s2), and a (rad/s2). You already have data for the spindle radius of 0.03 m.

8. Lastly, let’s vary the moment of inertia of the platter. Keep the hanging mass constant at 2 kg and spindle radius constant at 0.03 m. Collect all the data yielded by the simulation, first for the I= 0.02 kg * m2 platter, and then for the I = 0.06 kg * m2 platter: Time (s), Dy (m), Dq (rad), v(m/s), w (rad/s), a (m/s2), and a (rad/s2). You already have data for the I = 0.04 kg * m2 platter.

QUESTIONS:

1. Using data from one of your runs, solve for FT using equation 1. Then insert your FT into equation 2, along with the spindle’s radius, and calculate a. Is it consistent with the a you obtained from your simulation? Show me.

2. What happens to this value of FT as mass increases (for a given spindle radius and base plate moment of inertia)?

3. What happens to linear acceleration as you increase the hanging mass (for a given spindle radius and base plate moment of inertia)?

4. What happens to linear acceleration as you increase the spindle radius (for a given value of hanging mass and base plate moment of inertia)?

5. What happens to linear acceleration as you increase the moment of inertia (for a given value of hanging mass and base plate moment of inertia)?

6. With data from one of your runs, show me a mathematical relationship between your Dq (rad), angular velocity w (rad/s), and angular acceleration (a) values (rad/s2). Use your knowledge from this chapter.

7. With data from one of your runs, show me a mathematical relationship between your velocity (m/s) and angular velocity (w) values. Use your knowledge from this chapter.

8. Combine equations 1 and 2 to solve for linear acceleration in terms of the other quantities. Please help


Fy=mg-FT =may (Eqn. 1)

Fy=mg-FT =may (Eqn. 1) STEPS: 5. Okay, now we’re ready to collect data. Le

ansver
Answers: 1

Another question on Physics

question
Physics, 22.06.2019 04:30
The current in a hair dryer measures 11 amps. the resistance of the hair dryer is 12 ohms. what is the voltage?unit:
Answers: 1
question
Physics, 22.06.2019 13:00
Ways that industry and agriculture use physical properties to separate substances
Answers: 1
question
Physics, 22.06.2019 16:00
The field between two charged parallel plates is kept constant. if the two plates are brought closer together, the potential difference between the two plates either a) decrease b) does not change c) increase?
Answers: 3
question
Physics, 22.06.2019 18:40
Which body is in equilibrium? (1) a satellite orbiting earth in a circular orbit (2) a ball falling freely toward the surface of earth (3) a car moving with a constant speed along a straight, level road (4) a projectile at the highest point in its trajectory
Answers: 2
You know the right answer?
Fy=mg-FT =may (Eqn. 1) Fy=mg-FT =may (Eqn. 1)
STEPS: 5. Okay, now we’re ready to collect data...
Questions
question
Mathematics, 08.04.2020 18:26
question
Mathematics, 08.04.2020 18:26