subject
Physics, 25.03.2020 06:00 ichabella2010

Magnetic fields are sometimes measured by balancing magnetic forces against known mechanical forces. Your task is to measure the strength of a horizontal magnetic field using a 12-cm-long rigid metal rod that hangs from two nonmagnetic springs, one at each end, with spring constants 1.3 N/m. You first position the rod to be level and perpendicular to the field, whose direction you determined with a compass. You then connect the ends of the rod to wires that run parallel to the field and thus experience no forces. Finally, you measure the downward deflection of the rod, stretching the springs, as you pass current through it.
Your data are as follows:

Current, I (A) Deflection, delta y (mm)
1.0 4
2.0 9
3.0 12
4.0 15
5.0 21

You want to determine the magnetic field strength by graphing the data. Select the appropriate variables to graph on each axis that will produce a straight-line graph with either a slope or intercept that will allow you to determine the field strength.

ansver
Answers: 3

Another question on Physics

question
Physics, 22.06.2019 12:00
The sun’s mass is 2.0×10^ 30 kg, its radius is 7.0×10 5 km, and it has a rotational period of approximately 28 days. if the sun should collapse into a white dwarf of radius 3.5×10 3 km, what would its period be if no mass were ejected and a sphere of uniform density can model the sun both before and after?
Answers: 3
question
Physics, 22.06.2019 13:00
Which of the following correctly describes what happens when an atomic bomb explodes? small pieces of fissionable material are joined and form a body with a mass greater than the critical mass, the relative number of neutrons escaping decreases, and a chain reaction and explosion result. large pieces of fissionable matter are brought together quickly and form a body with a mass smaller than the critical mass, the relative number of escaping neutrons increases, and a chain reaction and explosion result.
Answers: 2
question
Physics, 22.06.2019 18:10
See the attachment and solve question 5th
Answers: 3
question
Physics, 22.06.2019 19:30
Amass m = 74 kg slides on a frictionless track that has a drop, followed by a loop-the-loop with radius r = 18.4 m and finally a flat straight section at the same height as the center of the loop (18.4 m off the ground). since the mass would not make it around the loop if released from the height of the top of the loop (do you know why? ) it must be released above the top of the loop-the-loop height. (assume the mass never leaves the smooth track at any point on its path.) 1. what is the minimum speed the block must have at the top of the loop to make it around the loop-the-loop without leaving the track? 2. what height above the ground must the mass begin to make it around the loop-the-loop? 3. if the mass has just enough speed to make it around the loop without leaving the track, what will its speed be at the bottom of the loop? 4. if the mass has just enough speed to make it around the loop without leaving the track, what is its speed at the final flat level (18.4 m off the ground)? 5. now a spring with spring constant k = 15600 n/m is used on the final flat surface to stop the mass. how far does the spring compress?
Answers: 3
You know the right answer?
Magnetic fields are sometimes measured by balancing magnetic forces against known mechanical forces....
Questions