subject
Physics, 07.03.2020 05:11 BonnyRios

Water falls without splashing at a rate of 0.300 L/s from a height of 2.50 m into a 0.530-kg bucket on a scale. If the bucket is originally empty, what does the scale read 4.00 s after water starts to accumulate in it?

ansver
Answers: 3

Another question on Physics

question
Physics, 22.06.2019 11:50
Amoving electron has kinetic energy k1. after a net amount of work w has been done on it, the electron is moving one-quarter as fast in the opposite direction. (a) find w in terms of k1. (b) does your answer depend on the final direction of the electron's motion?
Answers: 2
question
Physics, 22.06.2019 14:00
Select for each of the following statements whether it is correct or incorrect. (a) in an isothermal expansion of an ideal gas. (b) the temperature remains constant. (b) the pressure remains constant. (c) there is work done by the gas. (d) there is heat added to the gas. (e) the change in internal energy equals zero.
Answers: 1
question
Physics, 22.06.2019 18:30
Ablock of mass m slides on a horizontal frictionless table with an initial speed v0 . it then compresses a spring of force constant k and is brought to rest. the acceleration of gravity is 9.8 m/s2. how much is the spring compressed x from its natural length? 1) x = v0*sqrt(k/(mg)) 2) x=v0*sqrt(m/k) 3) x=v0*((mk)/g) 4) x=v0*sqrt(k/m) 5) x=v0*(m/kg) 6) x=v0*sqrt((mg)/k) 7) x=(v0)^2/(2g) 8) x=v0*(k/(mg)) 9) x=(v0)^2/(2m) 10) x=v0*((mg)/k)
Answers: 3
question
Physics, 22.06.2019 19:30
Amass m = 74 kg slides on a frictionless track that has a drop, followed by a loop-the-loop with radius r = 18.4 m and finally a flat straight section at the same height as the center of the loop (18.4 m off the ground). since the mass would not make it around the loop if released from the height of the top of the loop (do you know why? ) it must be released above the top of the loop-the-loop height. (assume the mass never leaves the smooth track at any point on its path.) 1. what is the minimum speed the block must have at the top of the loop to make it around the loop-the-loop without leaving the track? 2. what height above the ground must the mass begin to make it around the loop-the-loop? 3. if the mass has just enough speed to make it around the loop without leaving the track, what will its speed be at the bottom of the loop? 4. if the mass has just enough speed to make it around the loop without leaving the track, what is its speed at the final flat level (18.4 m off the ground)? 5. now a spring with spring constant k = 15600 n/m is used on the final flat surface to stop the mass. how far does the spring compress?
Answers: 3
You know the right answer?
Water falls without splashing at a rate of 0.300 L/s from a height of 2.50 m into a 0.530-kg bucket...
Questions
question
Mathematics, 21.01.2021 20:20
question
Biology, 21.01.2021 20:20