subject
Physics, 18.02.2020 05:50 officialariana01

A small, solid sphere of mass 0.9 kg and radius 47 cm rolls without slipping along the track consisting of slope and loop-the-loop with radius 4.75 m at the end of the slope. It starts from rest near the top of the track at a height h, where h is large compared to 47 cm. If the g = 9.8 m/s^2 and I(solid sphere) = 2/5 mr^2, what is the minimum value of h such that the sphere completes the loop?

ansver
Answers: 1

Another question on Physics

question
Physics, 22.06.2019 01:00
Red’s momentum vector before the collision is green’s momentum vector after the collision. question 1 options: shorter than longer than equal to question 2 (1 point) saved since green bounces off red, this must be an collision. question 2 options: explosion inelastic elastic question 3 (1 point) saved red transfers of its momentum to green during the collision. question 3 options: little all most none question 4 (4 points) why does red transfer all its momentum to green? back up your answer with information from the simulation. write at least 2 sentences. question 4 options: skip toolbars for . more insert actions. more text actions. more paragraph style actions. question 5 (1 point) now make red much heavier than green. answer the questions below to describe how both red and green behave after the collision. you might want to play the sim multiple times. click on restart or return balls to start over. to see numbers, check the show values box (inside the green box). red during the collision because it transferred some momentum to green. question 5 options: sped up kept the same velocity slowed down question 6 (1 point) green sped up during the collision as it question 6 options: lost momentum to red maintained a constant momentum. gained momentum from red question 7 (1 point) after the collision . . question 7 options: red bounced off green and went to the left. green moved to the right. both green and red stopped as they have lost all momentum. red stopped and green moved to the right. both green and red moved to the right. question 8 (4 points) only some of red’s momentum was transferred to green. why did this occur? back up your answer with information from the simulation. write at least 2 sentences. question 8 options: skip toolbars for . more insert actions. more text actions. more paragraph style actions. question 9 (1 point) now make red much lighter than green. answer the questions below to describe how both red and green behave after the collision. you might want to play the sim multiple times. click on restart or return balls to start over. to see numbers, check the show values box (inside the green box). which is true about the collision? question 9 options: green slowed down after the collision therefore it must have lost momentum. green sped up after the collision therefore it must have lost momentum. green sped up after the collision therefore it must have gained momentum. green slowed down after the collision therefore it must have gained momentum. question 10 (1 point) since green gained momentum, red had to have momentum because you cannot create or destroy momentum. question 10 options: lost kept the same amount of gained question 11 (1 point) since green was so much and harder to move, it caused red to bounce back to the left giving red . question 11 options: lighter. . . . negative heavier . . . . negative lighter. . . . positive heavier . . . . positive question 12 (4 points) now, click on more data at the bottom of the sim. play with different numbers for the masses and starting velocities. you can even make the starting velocities negative! tell me one thing you discovered by adjusting the speeds and masses. write at least 2 sentences. be specific and use words like velocity, momentum, mass, increased, decreased, etc. question 12 options: skip toolbars for . more insert actions. more text actions. more paragraph style actions. part 2: inelastic collisions question 13 (1 point) click on the "less data" box at the bottom of the sim. in the green box, slide the elasticity meter all the way to inelastic so there is 0% elasticity: make the masses whatever size suits you. make sure that green starts out with a velocity of 0 m/s – if you didn’t change this in the last step, you don’t need to do anything. push play and observe! true or false: when red and green collide, they stick together. question 13 options: true false question 14 (1 point) the velocity of red & green after the collision is the velocity that red started off with. question 14 options: larger than smaller than equal to
Answers: 1
question
Physics, 22.06.2019 01:30
In a thunderstorm, charge builds up on the water droplets or ice crystals in a cloud. thus, the charge can be considered to be distributed uniformly throughout the cloud. for the purposes of this problem, take the cloud to be a sphere of diameter 1.00 kilometer. the point of this problem is to estimate the maximum amount of charge that this cloud can contain, assuming that the charge builds up until the electric field at the surface of the cloud reaches the value at which the surrounding air breaks down. this breakdown means that the air becomes highly ionized, enabling it to conduct the charge from the cloud to the ground or another nearby cloud. the ionized air will then emit light due to the recombination of the electrons and atoms to form excited molecules that radiate light. in addition, the large current will heat up the air, resulting in its rapid expansion. these two phenomena account for the appearance of lightning and the sound of thunder. take the breakdown electric field of air to be eb=3.00ă—106n/c. part a estimate the total charge q on the cloud when the breakdown of the surrounding air is reached. express your answer numerically, to three significant figures, using ďµ0=8.85ă—10â’12c2/(nâ‹…m2) .
Answers: 2
question
Physics, 22.06.2019 12:30
An object resting on a table weighs 100 n. with what force is the object pushing on the table? with what force is the table pushing on the object? explain how you got your answer.
Answers: 2
question
Physics, 22.06.2019 12:30
Brades exam guidelines exam instructions billing & payments & support question 6 of 20 : select the best answer for the question use this illustration to answer the question below. forms & resources al programs 9 ww linics 6. in the circuit shown in the figure above, suppose that the value of r, is 100k, and the value of r2 is 470 kq. at which of the following locations in the circuit would you measure the highest voltage with your meter? rvices 999999 a. between points b and c b. between points a and b c. between points b and e d. between points a and c eredu mark for review (will be highlighted on the review page) mend < < previous question next question
Answers: 1
You know the right answer?
A small, solid sphere of mass 0.9 kg and radius 47 cm rolls without slipping along the track consist...
Questions
question
English, 04.03.2021 20:10
question
Social Studies, 04.03.2021 20:10
question
Mathematics, 04.03.2021 20:10
question
Mathematics, 04.03.2021 20:10
question
Mathematics, 04.03.2021 20:10