subject
Physics, 04.11.2019 20:31 25linm

A2.36 kg block resting on a frictionless surface is attached to an ideal spring with spring constant k = 260 nm . a force is applied to the block which changes its position from xi=5.89 cm to xf=−15.4 cm , each distance measured relative to the equilibrium position of the block. while the block is being moved, find
(a) the work done by the spring and
(b) the work done by the applied force.

ansver
Answers: 3

Another question on Physics

question
Physics, 21.06.2019 17:10
The “death throes” of stars are amongst the most complex phenomena in all of astronomy, and the “corpses” of stars amongst the most energetic and exotic objects in existence. beginning at the end of the core helium fusion stage in a star’s life, describe in detail the post-main sequence development of both (a) a 1.0 solar mass star, and (b) a 25.0 solar mass star. in what significant ways do they differ? what role does each of these types of stars play in the "star-gas-star" cycle and the evolution of chemical elements in our galaxy?
Answers: 1
question
Physics, 21.06.2019 21:50
Apossible explanation for a set of facts that can be tested by further investigation is called
Answers: 1
question
Physics, 21.06.2019 22:30
Fft review: linspace, fs, fftshift, nfft 1. generate one second of a cosine of w,-10hz sampled at f, = 100hz and assign it to x. define a tt as your time axis 2. take 64 points fft. 3. as you remember, the dft (which the fft implements) computes n samples of s2t where k-0,1,2, n -1. plot the magnitude of this 64-points fft at range 0 to 63, what do you think of this graph? 4â·to get the x-axis into a hz-frequency form, plot this 64-points fft between-50 to 50 (the 100hz sampling rate) and have n-points between them. 5. according to your figure, what frequency is this cosine wave at? 6. remember that the fft is evaluating from 0 to 2ď€. we are used to viewing graphs from-ď€ to ď€. therefore, you need to shift your graph. 7. now according to your shifted graph. what frequency is this at? 8. note that the spikes have long drop-offs? try a 1024-point dft. note that the peak is closer to 10 and the drop-off is quicker. although, now sidelobes are an issue
Answers: 2
question
Physics, 22.06.2019 00:30
Consider an ordinary, helium-filled party balloon with a volume of 2.2 ft3. the lifting force on the balloon due to the outside air is the net resultant of the pressure distribution exerted on the exterior surface of the balloon. using this fact, we can derive archimedes’ principle, namely that the upward force on the balloon is equal to the weight of the air displaced by the balloon. assuming that the balloon is at sea level, where the air density is 0.002377 slug/ft3, calculate the maximum weight that can be lifted by the balloon. note: the molecular weight of air is 28.8 and that of helium is 4.
Answers: 2
You know the right answer?
A2.36 kg block resting on a frictionless surface is attached to an ideal spring with spring constant...
Questions
question
Mathematics, 03.09.2021 23:10
question
Biology, 03.09.2021 23:10