subject
Physics, 27.09.2019 01:00 lucky1940

Agalvanometer has an internal resistance of 100 ω and deflects full-scale at 2.00 ma. what size resistor should be added to the galvanometer to convert it to a milliammeter capable of reading up to 4.00 ma, and how should this resistor be connected to the galvanometer?

ansver
Answers: 3

Another question on Physics

question
Physics, 22.06.2019 15:00
Sodium chloride, nacl, is formed when a sodium atom transfers its electron to a chlorine atom. the difference in charge between the two atoms creates a(n) attraction that bonds them together.
Answers: 1
question
Physics, 22.06.2019 18:00
Air enters a gas turbine with two stages of compression and two stages of expansion at 100 kpa and 17°c. this system uses a regenerator as well as reheating and intercooling – the intercooler returns the air to the inlet temperature. the pressure ratio across each compressor is 4 ; 300 kj/kg of heat are added to the air in each combustion chamber; and the regenerator operates perfectly while increasing the temperature of the cold air by 20°c. determine the system’s thermal efficiency. assume isentropic operations for all compressor and the turbine stages and use constant specific heats at room temperature. (0.378)
Answers: 3
question
Physics, 22.06.2019 19:30
Amass m = 74 kg slides on a frictionless track that has a drop, followed by a loop-the-loop with radius r = 18.4 m and finally a flat straight section at the same height as the center of the loop (18.4 m off the ground). since the mass would not make it around the loop if released from the height of the top of the loop (do you know why? ) it must be released above the top of the loop-the-loop height. (assume the mass never leaves the smooth track at any point on its path.) 1. what is the minimum speed the block must have at the top of the loop to make it around the loop-the-loop without leaving the track? 2. what height above the ground must the mass begin to make it around the loop-the-loop? 3. if the mass has just enough speed to make it around the loop without leaving the track, what will its speed be at the bottom of the loop? 4. if the mass has just enough speed to make it around the loop without leaving the track, what is its speed at the final flat level (18.4 m off the ground)? 5. now a spring with spring constant k = 15600 n/m is used on the final flat surface to stop the mass. how far does the spring compress?
Answers: 3
question
Physics, 22.06.2019 23:00
Which of the following describes how a microwave heats food
Answers: 2
You know the right answer?
Agalvanometer has an internal resistance of 100 ω and deflects full-scale at 2.00 ma. what size resi...
Questions
question
Mathematics, 21.05.2020 03:02