subject
Engineering, 08.12.2021 18:50 syd141

Two technicians are discussing cylinder honing technician a says a good cross hatch helps to trap the oil and retain it in the cylinder bore where it is needed

ansver
Answers: 1

Another question on Engineering

question
Engineering, 03.07.2019 14:10
Amass of m 1.5 kg of steam is contained in a closed rigid container. initially the pressure and temperature of the steam are: p 1.5 mpa and t 240°c (superheated state), respectively. then the temperature drops to t2= 100°c as the result of heat transfer to the surroundings. determine: a) quality of the steam at the end of the process, b) heat transfer with the surroundings. for: p1.5 mpa and t 240°c: enthalpy of superheated vapour is 2900 kj/kg, specific volume of superheated vapour is 0. 1483 m/kg, while for t 100°c: enthalpy of saturated liquid water is 419kj/kg, specific volume of saturated liquid water is 0.001043m/kg, enthalpy of saturated vapour is 2676 kj/kg, specific volume of saturated vapour is 1.672 m/kg and pressure is 0.1 mpa.
Answers: 3
question
Engineering, 04.07.2019 18:20
Air flows over a heated plate àt a velocity of 50m/s. the local skin factor coefficient at a point on a plate is 0.004. estimate the local heat transfer coefficient at this point.the following property data for air are given: density = 0.88kg/m3 , viscosity 2.286 x 10 ^-5 kgm/s , k = 0.035w/mk ,cp = 1.001kj/kgk. use colburn reynolds analogy.
Answers: 1
question
Engineering, 04.07.2019 19:20
At steady state, air at 200 kpa, 325 k, and mass flow rate of 0.5 kg/s enters an insulated duct having differing inlet and exit cross-sectional areas. the inlet cross-sectional area is 6 cm2. at the duct exit, the pressure of the air is 100 kpa and the velocity is 250 m/s. neglecting potential energy effects and modeling air as an 1.008 kj/kg k, determine ideal gas with constant cp = (a) the velocity of the air at the inlet, in m/s. (b) the temperature of the air at the exit, in k. (c) the exit cross-sectional area, in cm2
Answers: 2
question
Engineering, 06.07.2019 03:10
Consider a 1.2 meter high and 2 meter wide glass window whose thickness is 6 mm and thermal conductivity is 0.78 w/m °c. the room temperature is maintained at 24 °c, while the outdoor temperature is -5 °c. the convective heat transfer coefficients on the inner and outer surfaces of the window are 10 w/m2 °c and 25 w/m2 °c respectively. (a) draw the thermal resistance network, etermine the steady rate of heat transfer t e glass window (c) determine the temperature of the inner surface of the window
Answers: 3
You know the right answer?
Two technicians are discussing cylinder honing technician a says a good cross hatch helps to trap th...
Questions
question
World Languages, 09.09.2019 22:10