subject
Engineering, 10.07.2021 05:00 student679

The stress transformation equations required to determine (a) the normal shear stress perpendicular to the weld and (b) the shear stress parallel to the weld require an angular value that defines the appropriate orientation for this analysis. What is the value of the angle that will be required here

ansver
Answers: 1

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Acompressor receives the shaft work to decrease the pressure of the fluid. a)- true b)- false
Answers: 3
question
Engineering, 04.07.2019 18:10
What are the two (02) benefits, which may result from a successful implementation of preventive maintenance (pm) program in an organization? (clo3)a)- lean manufacturing b)-overlapping responsibilities c)-the planner is not qualified d)-accurate contractor information e)-reduction in equipment redundancies f)-accurate stores information
Answers: 3
question
Engineering, 04.07.2019 18:20
Steam enters a converging nozzle at 3.0 mpa and 500°c with a at 1.8 mpa. for a nozzle exit area of 32 cm2, determine the exit velocity, mass flow rate, and exit mach number if the nozzle: negligible velocity, and it exits (a) is isentropic (b) has an efficiency of 94 percent
Answers: 2
question
Engineering, 04.07.2019 19:10
An engine, weighing 3000 n, is supported on a pedestal mount. it has been observed that the engine induces vibration into the surrounding area through its pedestal at the maximum operating speed. determine the stiffness of the dynamic vibration absorber spring in (n/m) that will reduce the vibration when mounted on the pedestal. the magnitude of the exciting force is 250 n, and the amplitude of motion of the auxiliary mass is to be limited to 2 mm note: in this question type-in right numbers, no decimals, no fractions, no unit. approximate to right number if needed
Answers: 3
You know the right answer?
The stress transformation equations required to determine (a) the normal shear stress perpendicular...
Questions
question
Mathematics, 30.12.2019 08:31