subject
Engineering, 05.07.2021 20:00 juliannabartra

Steam enters an adiabatic turbine at 6 MPa, 600°C, and 80 m/s and leaves at 50 kPa, 100°C, and 140 m/s. If the power output of the turbine is 5 MW, determine (a) the reversible power output and (b) the second-law efficiency of the turbine. Assume the surroundings to be at 25°C.

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Which one from below is not one of the reasons of planning failures? (clo3) a)-planner is careless. b-planner spend less time in the field but more time on the desk c)-planner is not qualified d)-planner does not have sufficient time to properly plan
Answers: 3
question
Engineering, 04.07.2019 19:10
Asteel wire of 2 mm diameter is fixed between two points located 2 m apart. the tensile force in the wire is 250n, if its density of steel is given by 7830 kg/m3 the fundamental frequency of vibration hz? ?
Answers: 3
question
Engineering, 04.07.2019 19:10
Agas contained within a piston-cylinder assembly e end nation about same energy states, 1 and 2, where pi 10 bar, v undergoes two processes, a and b, between the sam 0.1 m3, ui-400 kj and p2 1 bar, v2 1.0 m2, u2 200 kj: process a: process from 1 to 2 during which the pressure- volume relation is pv constant process b: constant-volume process from state 1 to a pressure of 2 bar, followed by a linear pressure-volume process to +20 0 state 2 kinetic and potential energy effects can be ignored. for each of the processes a and b, (a) sketch the process on p-v coordinates, (b) evaluate the work, in kj, and (c) evaluate process the heat transfer, in kj
Answers: 2
question
Engineering, 04.07.2019 19:20
To save energy, the air supply to a 2000 ft office has been shut off overnight and the room temperature has dropped to 40°f. in the morning, the thermostat is reset to 70°f and warm air at 120 f begins to flov in at 200ft'/min. the air is well mixed within the room, and an equal mass flow of air at room temperature (changing with time) is withdrawn through a return duct. the air pressure is nearly 1 atm everywhere. ignoring heat transfer with the surroundings and kinetic and potential energy effects, estimate how long it takes for the room temperature to reach 70°f. plot the room temperature as a function of time.
Answers: 1
You know the right answer?
Steam enters an adiabatic turbine at 6 MPa, 600°C, and 80 m/s and leaves at 50 kPa, 100°C, and 140 m...
Questions