subject
Engineering, 12.03.2021 15:10 adantrujillo1234

Experiments to determine the local convection heat transfer coefficient for uniform flow normal to a heated circular disk have yielded a radial Nusselt number distribution of the form where both n and a are positive. The Nusselt number at the stagnation point is correlated in terms of the Reynolds (ReD VD/ ) and Prandtl numbers Obtain an expression for the average Nusselt number, D D/k, corresponding to heat transfer from an isothermal disk. Typically, boundary layer development from a stagnation point yields a decaying convection coefficient with increasing distance from the stagnation point. Provide a plausible explanation for why the opposite trend is observed for the disk.

ansver
Answers: 1

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Water at 70°f and streams enter the mixing chamber at the same mass flow rate, determine the temperature and the quality of the exiting stream. 0 psia is heated in a chamber by mixing it with saturated water vapor at 20 psia. if both streams enters the mixing chamber at the same mass flow rate, determine the temperature and the quality of the existing system.
Answers: 2
question
Engineering, 04.07.2019 18:10
Assuming compressible flow of air and that the measurements are done at flagstaff a pitot static tube that gives the difference of total and static pressure measures 0.35 m of mercury. what is the velocity of air? assume the temperature to be 300k. (submit your excel or matlab calculation sheet)
Answers: 1
question
Engineering, 06.07.2019 03:20
Avertical steel rod of length 2.0 m and diameter 25 mm is rigidly fixed at its upper end and has a flange at its lower, free, end. what will be the maximum stress produced in the rod when a load of 20 kn is applied, (a) gradually to the lower end, (b) suddenly to the lower end, (c) by a collar falling from a height of 50 mm on to the flange?
Answers: 3
question
Engineering, 06.07.2019 03:20
1kg of water contained in a piston-cylinder assembly undergoes two processes in series from an initial state where the pressure is 3.0 bar and the temperature is 150°c process 1-2: the water is compressed isothermally to a volume of 0.25 m^3 with 120 kj of work being done to the system. process 2-3: the water is heated at constant volume to a final pressure of 10 bar. a. find the change in internal energy for the system. b. calculate the amount of heat transferred, in kj. c. sketch both processes on a t-v diagram. (196.33 kj/kg, 76.33 kj)
Answers: 1
You know the right answer?
Experiments to determine the local convection heat transfer coefficient for uniform flow normal to a...
Questions
question
Mathematics, 02.03.2021 23:40
question
Arts, 02.03.2021 23:40
question
Mathematics, 02.03.2021 23:40
question
Mathematics, 02.03.2021 23:40
question
Mathematics, 02.03.2021 23:40