subject
Engineering, 25.09.2020 02:01 Arealbot

In an aircraft jet engine at takeoff, the combustion products expand adiabatically in the exhaust nozzle. At entrance to the nozzle, the pressure is 0.180 MPa and the temperature is 1200 K. The kinetic energy of the gas entering the nozzle is very much smaller than the kinetic energy of the gas leaving the nozzle. The specific heat of the exhaust gas varies with temperature approximately as follows: Cp = 0.959 + 1.16 X 10-4T + 3.65 X 10-8T2 , in which the units of cP are kJ/kg · K and Tis the temperature in K. The molecular weight of the exhaust gas is 30. Supposing the expansion to be frictionless (reversible) as well as adiabatic, show how the exhaust velocity and pressure will depend on the exhaust temperature for a series of values: 1100, 1000, and 900 K. At each temperature determine also the speed of sound VyRT'.

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 12:10
On a average work day more than work place firs are reorted
Answers: 1
question
Engineering, 04.07.2019 18:10
Different types of steels contain different elements that alter the characteristics of the steel. for each of the following elements, explain what the element does when alloyed with steel.
Answers: 2
question
Engineering, 04.07.2019 18:10
Thermal stresses are developed in a metal when its a) initial temperature is changed b) final temperature is changed c) density is changed d) thermal deformation is prevented e) expansion is prevented f) contraction is prevented
Answers: 2
question
Engineering, 04.07.2019 18:10
Machinery that is a key part of the process and without which the plant or process cannot function is classifed as: (clo4) a)-critical machinery b)-essential machinery c)-general purpose machinery d)-none of the specified options.
Answers: 1
You know the right answer?
In an aircraft jet engine at takeoff, the combustion products expand adiabatically in the exhaust no...
Questions
question
World Languages, 14.07.2020 19:01
question
Mathematics, 14.07.2020 19:01