subject
Engineering, 08.09.2020 14:01 ctyrector

Consider a hypothetical X+Y− ion pair for which the equilibrium interionic spacing and bonding energy values are 0.38 nm and –5.37 eV, respectively. If it is known that n in Equation 2.17 has a value of 8, using the results of Problem 2.18, determine explicit expressions for attractive and repulsive energies EA and ER of Equations 2.9 and 2.11. En = -A/r + B/(r^n)

Calculate the bonding energy Eo in terms of the parameters A, B and n.

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:20
Along 8-cm diameter steam pipe whose external surface temperature is 900c connects two buildings. the pipe is exposed to ambient air at 70c with a wind speed of 50 km/hr blowing across the pipe. determine the heat loss from the pipe per unit length. (b) air at 500c enters a section of a rectangular duct (15 cm x 20 cm) at an average velocity of 7 m/s. if the walls of the duct are maintained at 100c. a) the length of the tube for an exit temperature of the air to be 40 0c. b)the rate of heat transfer from the air. c) the fan power needed to overcome the pressure drop in this section of the duct.
Answers: 1
question
Engineering, 04.07.2019 18:20
Amixture of slurry and mud is to be pumped through a horizontal pipe of diameter 500 mm. the fluid behaves as a bingham plastic with a yield stress of 30 pa and viscosity 0.04 pa.s. describe the effects of the shear stress through a transverse section of the pipe by plotting the variation in shear stress and velocity profile: (i) just before the slurry starts to move (ii) as the slurry flows when the pressure gradient is double that in part (i)
Answers: 3
question
Engineering, 04.07.2019 19:10
Plan an experiment to measure the surface tension of a liquid similar to water. if necessary, review the ncfmf video surface tension for ideas. which method would be most suitable for use in an undergraduate laboratory? what experimental precision could be expected?
Answers: 2
question
Engineering, 04.07.2019 19:20
Air enters a horizontal, constant-diameter heating duct operating at steady state at 290 k, 1 bar, with a volumetric flow rate of 0.25 m°/s, and exits at 325 k, 0.95 bar. the flow area is 0.04 m2. assuming the ideal gas model with k = 1.4 for the air, determine (a) the velocity at the inlet and exit, each in m/s, and (c) the rate of heat transfer, in kw flow rate, in kg/s, (b) the mass kg 0.3
Answers: 2
You know the right answer?
Consider a hypothetical X+Y− ion pair for which the equilibrium interionic spacing and bonding ener...
Questions
question
Physics, 26.09.2021 18:30
question
Mathematics, 26.09.2021 18:30
question
Mathematics, 26.09.2021 18:30
question
Mathematics, 26.09.2021 18:30
question
Mathematics, 26.09.2021 18:30
question
Biology, 26.09.2021 18:30
question
Biology, 26.09.2021 18:30
question
English, 26.09.2021 18:30
question
Mathematics, 26.09.2021 18:30