subject
Engineering, 05.05.2020 05:40 lilquongohard

Consider incompressible flow in a circular channel. Derive general expressions for Reynolds number in terms of (a) volume flow rate Q and tube diameter D and (b) mass flow rate mp and tube diameter. The Reynolds number is 1800 in a section where the tube diameter is 6 mm. (c) Find the Reynolds number for the same flow rate in a section where the tube diameter is 6 mm.

ansver
Answers: 1

Another question on Engineering

question
Engineering, 04.07.2019 16:10
The force on a cutting tool are 2600n vertically downward and 2100 horizontal. determine the resultant force acting on the tool and the angle at which it acts.
Answers: 1
question
Engineering, 04.07.2019 18:10
Consider a large isothermal enclosure that is maintained at a uniform temperature of 2000 k. calculate the emissive power of the radiation that emerges from a small aperture on the enclosure surface. what is the wavelength ? , below which 10% of the emission is concentrated? what is the wavelength ? 2 above which 10% of the emission is concentrated? determine the wavelength at which maximum spectral emissive power occurs. what is the irradiation incident on a small object placed inside the enclosure?
Answers: 2
question
Engineering, 04.07.2019 18:10
Hydraulic fluid with a sg. of 0.78 is flowing through a 1.5 in. i.d. pipe at 58 gal/min. the fluid has an absolute viscosity of 11.8 x 105 lbf-sec/ft2. is the flow laminar, turbulent or within the critical range? give both a numerical reynolds number and a term answer.
Answers: 3
question
Engineering, 04.07.2019 18:20
Inadequate stores control is not an obstacle to effective work order system. (clo4) a)-true b)-false
Answers: 3
You know the right answer?
Consider incompressible flow in a circular channel. Derive general expressions for Reynolds number i...
Questions
question
Mathematics, 01.03.2021 20:40
question
Mathematics, 01.03.2021 20:40