subject
Engineering, 23.04.2020 01:54 kaylynchalman

A completely reversible heat pump produces heat at a rate of 100 kW to warm a house maintained at 25℃. The exterior air, which is at 0℃, serves as the source. Calculate the rate of entropy change of the two reservoirs and determine if this heat pump satisfies the second law according to the increase of entropy principle.

ansver
Answers: 1

Another question on Engineering

question
Engineering, 04.07.2019 18:10
The flow rate of air through a through a pipe is 0.02 m5/s. a pitot static tube is placed in the flow. the radius of the pitot static tube is 1 mm. assuming the flow to be steady and the air to be at 300k, calculate the difference in total and static pressure if the diameter of the pipe is: (a) d 0.1 m d 0.05 m (c) d 0.01 m
Answers: 2
question
Engineering, 04.07.2019 18:10
Journeyman training is usually related (clo2) a)-to specific tasks b)-to cost analysis of maintenance task c)-to control process to ensure quality d)-to installation of machinery
Answers: 2
question
Engineering, 04.07.2019 18:20
Select any two (2) areas of applications of chain-drive. (clo4) a)-permanent lubrication necessary b)-hydraulic forklift truck operation c)-rigging and heavy moving materials d)-relatively high maintenance costs e)-costlier than belt drives
Answers: 2
question
Engineering, 04.07.2019 18:20
Aquick transition of the operating speed of a shaft from its critical speed will whirl amplitude. (a) increase (b) limit (c) not affect (d) zero
Answers: 2
You know the right answer?
A completely reversible heat pump produces heat at a rate of 100 kW to warm a house maintained at 25...
Questions
question
Computers and Technology, 19.07.2019 00:30