subject
Engineering, 06.04.2020 17:59 rayray7155

The time delay of a long-distance call can be determined by multiplying a small fixed constant by the number of communication links on the telephone network between the caller and callee. Suppose the telephone network of a company named RT&T is a free tree. The engineers of RT&T want to compute the maximum possible time delay that may be experienced in a long-distance call. Given a free tree T, the diameter of T is the length of a longest path between two nodes of T. Give an efficient algorithm for computing the diameter of T.

ansver
Answers: 2

Another question on Engineering

question
Engineering, 03.07.2019 15:10
Ahouse has the following electrical appliance usage (1) single 40w lamp used for 4 hours per day (2) single 60w fan used for 12 hours per day (3) single 200w refrigerator that runs 24 hours per day with compressor run 12 hours and off 12 hours find the solar power inverter size in watt with correction factor of 1.25.
Answers: 1
question
Engineering, 04.07.2019 18:20
Aheavily insulated piston-cylinder device contains 0.02 m3 of steam at 300 kpa and 200 °c. 1.2 mpa. d this process. team is now compressed in a reversible manner to a pressure of etermine the entropy change and the work done on the steam during this process
Answers: 1
question
Engineering, 04.07.2019 19:20
To save energy, the air supply to a 2000 ft office has been shut off overnight and the room temperature has dropped to 40°f. in the morning, the thermostat is reset to 70°f and warm air at 120 f begins to flov in at 200ft'/min. the air is well mixed within the room, and an equal mass flow of air at room temperature (changing with time) is withdrawn through a return duct. the air pressure is nearly 1 atm everywhere. ignoring heat transfer with the surroundings and kinetic and potential energy effects, estimate how long it takes for the room temperature to reach 70°f. plot the room temperature as a function of time.
Answers: 1
question
Engineering, 06.07.2019 04:10
Water flows at the rate of 200 i/s upwards through a tapered vertical pipe. the diameter at marks(3) clo5) the bottom is 240 mm and at the top 200 mm and the length is 5m. the pressure at the bottom is 8 bar, and the pressure at the topside is 7.3 bar. determine the head loss through the pipe. express it as a function of exit velocity head.
Answers: 3
You know the right answer?
The time delay of a long-distance call can be determined by multiplying a small fixed constant by th...
Questions
question
History, 05.10.2019 18:10
question
World Languages, 05.10.2019 18:10