subject
Engineering, 19.03.2020 20:54 jay1041

Consider flow from a water reservoir through a circular hole of diameter D at the side wall at a vertical distance H from the free surface. The flow rate through an actual hole with a sharp-edged entrance (KL 5 0.5) is considerably less than the flow rate calculated assuming "frictionless" flow and thus zero loss for the hole. Disregarding the effect of the kinetic energy correction factor, obtain a relation for the "equivalent diameter" of the sharp-edged hole for use in frictionless flow relations.

ansver
Answers: 1

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Ariver flows from north to south at 8 km/h. a boat is to cross this river from west to east at a speed of 20 km/h (speed of the boat with respect to the earth/ground). at what angle (in degrees) must the boat be pointed upstream such that it will proceed directly across the river (hint: find the speed of the boat with respect to water/river)? a 288 b. 21.8 c. 326 d. 30.2
Answers: 3
question
Engineering, 04.07.2019 18:10
Ajournal bearing has a journal diameter of 3.250 in with a unilateral tolerance of 20.003 in. the bushing bore has a diameter of 3.256 in and a unilateral tolerance of 0.004 in. the bushing is 2.8 in long and supports a 700-lbf load. the journal speed is 900 rev/min. find the minimum oil film thickness and the maximum film pressure for both sae 20 and sae 20w-30 lubricants, for the tightest assembly if the operating film temperature is 160°f. a computer code is appropriate for solving this problem.
Answers: 3
question
Engineering, 04.07.2019 18:10
What are the two (02) benefits, which may result from a successful implementation of preventive maintenance (pm) program in an organization? (clo3)a)- lean manufacturing b)-overlapping responsibilities c)-the planner is not qualified d)-accurate contractor information e)-reduction in equipment redundancies f)-accurate stores information
Answers: 3
question
Engineering, 04.07.2019 18:20
Athin walled concentric tube exchanger is used to cool engine oil from 160°c to 60°c with water that is available at 25°c acting as a coolant. the oil and water flow rates are each at 2 kg/s, and the diameter of the inner tube is 0.5 m and the corresponding value of the overall heat transfer coefficient is 250 w/m2. oc. how long must the heat exchanger be to accomplish the desired cooling? cpwater=4.187 kj/kg-candcpengine el=2.035 kj/kg·°c, oil . 120]
Answers: 1
You know the right answer?
Consider flow from a water reservoir through a circular hole of diameter D at the side wall at a ver...
Questions
question
Mathematics, 18.08.2019 21:30
question
Mathematics, 18.08.2019 21:30
question
Geography, 18.08.2019 21:30
question
History, 18.08.2019 21:30