subject
Engineering, 11.03.2020 22:08 lilobekker5219

The engine in Problem 3-8 produces 57 kW of brake power at 2000 RPM. Calculate: (a) Torque. [N-m] (b) Mechanical efficiency. [%] (c) Brake mean effective pressure. [kPa] (d) Indicated specific fuel consumption. [gmlkW-hr]

ansver
Answers: 1

Another question on Engineering

question
Engineering, 03.07.2019 15:10
Apiston-cylinder with a volume of 0.25 m3 holds 1 kg of air (r 0.287 k/kgk) at a temperature of 100 c. heat transfer to the cylinder causes an isothermal expansion of the piston until the volume triples. how much heat is added to the piston-cylinder?
Answers: 3
question
Engineering, 04.07.2019 18:10
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26°c with a volumetric flow rate of 0.18 m3/s. refrigerant exits at 9 bar, 70°c. changes in kinetic and potential energy from inlet to exit can be ignored. determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kw.
Answers: 1
question
Engineering, 04.07.2019 18:10
Aplate clutch has a single pair of mating friction surfaces 250-mm od by 175-mm id. the mean value of the coefficient of friction is 0.30, and the actuating force is 4 kn. a) find the maximum pressure and the torque capacity using the uniform-wear model. b) find the maximum pressure and the torque capacity using the uniform-pressure model.
Answers: 3
question
Engineering, 04.07.2019 18:10
Water at 55c flows across a flat plate whose surface temperature is held constant at 95c. if the temperature gradient at the plate's surface for a given value of x is 18 c/mm, find a) local heat transfer coefficient. b) heat flux
Answers: 3
You know the right answer?
The engine in Problem 3-8 produces 57 kW of brake power at 2000 RPM. Calculate: (a) Torque. [N-m] (b...
Questions
question
Mathematics, 01.02.2022 14:00