subject
Engineering, 11.10.2019 17:10 MadDaddy95

Aparticle located at a point within a fluid flow has velocity components of u = -2 m/s and v = 3 m/s, and acceleration components of ax = -1.8 m/s2and ay = -2 m/s2.

determine the magnitude of the streamline component of acceleration of the particle.

determine the magnitude of the normal component of acceleration of the particle.

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Consider a large isothermal enclosure that is maintained at a uniform temperature of 2000 k. calculate the emissive power of the radiation that emerges from a small aperture on the enclosure surface. what is the wavelength ? , below which 10% of the emission is concentrated? what is the wavelength ? 2 above which 10% of the emission is concentrated? determine the wavelength at which maximum spectral emissive power occurs. what is the irradiation incident on a small object placed inside the enclosure?
Answers: 2
question
Engineering, 04.07.2019 18:20
Avolume of 2.65 m3 of air in a rigid, insulated container fitted with a paddle wheel is initially at 264 k, 5.6 bar. the air receives 432 kj by work from the paddle wheel. assuming the ideal gas model with cv = 0.71 kj/kg • k, determine for the air the amount of entropy produced, in kj/k
Answers: 2
question
Engineering, 04.07.2019 19:20
Apiping systems consists of 6 m of 6-std type k and 12 m of 4-std type k, both drawn copper tubing. the system conveys ethylene glycol at a rate of 0.013 m3/s. the pressure drop across the system is to be calculated. there are two 90° elbows in the 6-in pipe, a reduction from the 6-in pipe to the 4-in pipe and four 90° elbows in the 4-in pipe. all fittings are soldered (same as flanged) and regular. the inlet and outlet of the system are at the same height.
Answers: 1
question
Engineering, 06.07.2019 03:10
Air is flows through an adiabatic nozzle with an inlet pressure of 400 psia at a temperature of 300°f and a velocity of 20 ft/s. the outlet pressure is 40 psia and the velocity is 800 ftl/s. determine the outlet temperature of the air using: a) property tables b) specific heat (using the specific heat value for air at 300°f)
Answers: 3
You know the right answer?
Aparticle located at a point within a fluid flow has velocity components of u = -2 m/s and v = 3 m/s...
Questions
question
Mathematics, 31.01.2020 10:00
question
Mathematics, 31.01.2020 10:01