subject
Engineering, 29.09.2019 02:30 avree9815

Air at 1 bar, 17°c, and a mass flow rate of 0.3 kg/s enters compressor operating at steady state and exits at 3 bar, 147°c. determine the power required by the compressor and the rate of exergy destruction, each in kw. ignore the effects of motion and gravity. let t, = 17°c, po = 1 bar.

ansver
Answers: 1

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Asingle-geared blanking press has a stroke of 200 mm and a rated capacity of 320 kn. a cam driven ram is assumed to be capable of delivering the full press load at constant force during the last 15 percent of a constant-velocity stroke. the camshaft has an average speed of 90 rev/min and is geared to the flywheel shaft at a 6: 1 ratio. the total work done is to include an allowance of 16 percent for friction a) estimate the maximum energy fluctuation b) find the rim weight for an effective diameter of 1.2 m and a coefficient of speed fluctuation of 0.10
Answers: 1
question
Engineering, 04.07.2019 18:10
An ideal otto cycle with air as the working fluid has a compression ratio of 8. the minimum and maximum temperatures in the cycle are 300 k and 1340 k. use constant specific heats at room temperature to determine (a) the amount of heat transferred to the air during the heat- addition kj/kg, (b) the thermal efficiency, and (c) the thermal efficiency of a carnot cycle ope limits. process, in rating between the same temperature
Answers: 2
question
Engineering, 04.07.2019 18:10
The flow rate of air through a through a pipe is 0.02 m5/s. a pitot static tube is placed in the flow. the radius of the pitot static tube is 1 mm. assuming the flow to be steady and the air to be at 300k, calculate the difference in total and static pressure if the diameter of the pipe is: (a) d 0.1 m d 0.05 m (c) d 0.01 m
Answers: 2
question
Engineering, 04.07.2019 18:20
Atank with constant volume contains 2.27 kg of a mixture of water phases (liquid-vapor). in the initial state the temperature and the quality are 127 °c and 0.6, respectively. the mixture is heated until the temperature of 160 oc is reached. illustrate the process in a t-v diagram. then, determine (1) the mass of the vapor in kg at the initial state, (2) the final pressure in kpa.
Answers: 3
You know the right answer?
Air at 1 bar, 17°c, and a mass flow rate of 0.3 kg/s enters compressor operating at steady state and...
Questions
question
Mathematics, 17.02.2021 21:20
question
Mathematics, 17.02.2021 21:20