subject
Engineering, 13.09.2019 03:30 germaine88

Uniform internal heat generation at q˙⁢ = 5.00 × 107 w/m3 is occurring in a cylindrical nuclear reactor fuel rod of 43-mm diameter, and under steady-state conditions the temperature distribution is of the form t(r)=a+br2 , where t is in degrees celsius and r is in meters, while a= 800 °c and b= -4.167 × 105 °c/m2. the fuel rod properties are k= 30 w/m·k, rho= 1100 kg/m3, and cp= 800 j/kg·k. what is the rate of heat transfer per unit length of the rod at r = 0 (the centerline) and at r = 25 mm (the surface)? if the reactor power level is suddenly increased to q2 = 108 w/m3, what is the initial time rate of temperature change at r = 0 and r = 25 mm?

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Apump is used to circulate hot water in a home heating system. water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. the inlet pressure and temperature are 14.7 lbf/in.2, and 180°f, respectively; at the exit the pressure is 60 lbf/in.2 the pump requires 1/15 hp of power input. water can be modeled as an incompressible substance with constant density of 60.58 lb/ft3 and constant specific heat of 1 btu/lb or. neglecting kinetic and potential energy effects, determine the temperature change, in °r, as the water flows through the pump.
Answers: 1
question
Engineering, 04.07.2019 18:10
For the closed feedwater heater below, feedwater enters state 3 at a pressure of 2000 psia and temperature of 420 °f at a rate of ix10 ibhr. the feedwat extracted steam enters state 1 at a pressure of 1000 psia and enthalpy of 1500 btu/lbm. the extracted er leaves at an enthalpy of 528.7 btu/lbm steam leaves as a saturated liquid. (16) a) determine the mass flow rate of the extraction steam used to heat the feedwater (10) b) determine the terminal temperature difference of the closed feedwater heater
Answers: 3
question
Engineering, 04.07.2019 18:20
An open feedwater heater operates at steady state with liquid entering at inlet 1 with t? = 40°c and pl = 1 .2 mpa. water vapor att2-200°c and p2 = 1.2 mpa enters at inlet 2. saturated liquid water exits with a pressure of pa 1.2 mpa. neglect heat transfer with the surroundings and all kinetic and potential energy effects, determine the mass flow rate of steam at inlet 2 if the mass flow rate of liquid water at inlet 1 is given as 2 kg/s.
Answers: 3
question
Engineering, 04.07.2019 18:20
Aheavily insulated piston-cylinder device contains 0.02 m3 of steam at 300 kpa and 200 °c. 1.2 mpa. d this process. team is now compressed in a reversible manner to a pressure of etermine the entropy change and the work done on the steam during this process
Answers: 1
You know the right answer?
Uniform internal heat generation at q˙⁢ = 5.00 × 107 w/m3 is occurring in a cylindrical nuclear reac...
Questions
question
Mathematics, 17.07.2019 12:50